Real-time Distributed Computing Model of Low-Voltage Flow Data in Digital Power Grid under Autonomous and Controllable Environments
Motivated by the progress in artificial intelligence and edge computing, this paper proposes a real-time distributed computing model for low-voltage flow data in digital power grids under autonomous and controllable environments. The model utilizes edge computing through wireless offloading to effic...
Gespeichert in:
Veröffentlicht in: | EAI endorsed transactions on scalable information systems 2023-01 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by the progress in artificial intelligence and edge computing, this paper proposes a real-time distributed computing model for low-voltage flow data in digital power grids under autonomous and controllable environments. The model utilizes edge computing through wireless offloading to efficiently process and analyze data generated by low-voltage devices in the power grid. Firstly, we evaluate the performance of the system under consideration by measuring its outage probability, utilizing both the received signal-to-noise ratio (SNR) and communication and computing latency. Subsequently, we analyze the system’s outage probability by deriving an analytical expression. To this end, we utilize the Gauss-Chebyshev approximation to provide an approximate closed-form expression. The results of our experimental evaluation demonstrate the effectiveness of the proposed model in achieving real-time processing of low-voltage flow data in digital power grids. Our model provides an efficient and practical solution for the processing of low-voltage flow data, making it a valuable contribution to the field of digital power grids. |
---|---|
ISSN: | 2032-9407 2032-9407 |
DOI: | 10.4108/eetsis.v10i4.3166 |