Data Aggregation through Hybrid Optimal Probability in Wireless Sensor Networks
INTRODUCTION: In the realm of Wireless Sensor Networks (WSN), effective data dissemination is vital for applications like traffic alerts, necessitating innovative solutions to tackle challenges such as broadcast storms. OBJECTIVES: This paper proposes a pioneering framework that leverages probabil...
Gespeichert in:
Veröffentlicht in: | EAI endorsed transactions on scalable information systems 2024-02 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | INTRODUCTION: In the realm of Wireless Sensor Networks (WSN), effective data dissemination is vital for applications like traffic alerts, necessitating innovative solutions to tackle challenges such as broadcast storms. OBJECTIVES: This paper proposes a pioneering framework that leverages probabilistic data aggregation to optimize communication efficiency and minimize redundancy. METHODS: The proposed adaptable system extracts valuable insights from the knowledge base, enabling dynamic route adjustments based on application-specific criteria. Through simulations addressing bandwidth limitations and local broadcast issues, we establish a robust WSN-based traffic information system. RESULTS: By employing primal-dual decomposition, the proposed approach identifies optimal packet aggregation probabilities and durations, resulting in reduced energy consumption while meeting latency requirements. CONCLUSION: The efficacy of proposed method is demonstrated across various traffic and topology scenarios, affirming that probabilistic data aggregation effectively mitigates the local broadcast problem, ultimately leading to decreased bandwidth demands. |
---|---|
ISSN: | 2032-9407 2032-9407 |
DOI: | 10.4108/eetsis.4996 |