Alzheimer’s Disease Detection in MRI images using Deep Convolutional Neural Network Model

Alzheimer's disease (AD) is a neurodegenerative disease that affects cognitive abilities (thinking and memory etc) primarily among the elderly, due to which collective cognitive skills deteriorate, ultimately leading to death. Early detection of Alzheimer's disease is crucial for determini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EAI endorsed transactions on pervasive health and technology 2024-06, Vol.10
Hauptverfasser: Naganandhini, S., Shanmugavadivu, P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alzheimer's disease (AD) is a neurodegenerative disease that affects cognitive abilities (thinking and memory etc) primarily among the elderly, due to which collective cognitive skills deteriorate, ultimately leading to death. Early detection of Alzheimer's disease is crucial for determining appropriate therapeutic options. This research investigates the use of a Deep Convolutional Neural Network (CNN) for detecting Alzheimer's disease. Due to similar brain patterns and pixel intensities, CNN demonstrates promising results in diagnosing AD through automated feature extraction and characterization. Deep Learning algorithms are designed to perform automated feature extraction and categorization of input image datasets. In this study, a two-way classifier categorizes each image as either Healthy Control (HC) or Alzheimer's disease (AD). Experiments were carried out with the MIRIAD dataset, and the accuracy of disease classification into binary categories was evaluated. The recorded results of CNN with 4- and 5 -layer architectures confirms the effectiveness of the proposed method for AD detection.
ISSN:2411-7145
2411-7145
DOI:10.4108/eetpht.10.6435