Inverse zero-sum problems in finite Abelian p-groups
In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian...
Gespeichert in:
Veröffentlicht in: | Colloquium Mathematicum 2010, Vol.120 (1), p.7-21 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the minimal number of elements of maximal order within a zero-sumfree sequence in a finite Abelian p-group. For this purpose, in the general context of finite Abelian groups, we introduce a new number, for which lower and upper bounds are proved in the case of finite Abelian p-groups. Among other consequences, the method that we use here enables us to show that, if we denote by exp(G) the exponent of the finite Abelian p-group G which is considered, then a zero-sumfree sequence S with maximal possible length in G must contain at least exp(G)-1 elements of maximal order, which improves a previous result of W. Gao and A. Geroldinger. |
---|---|
ISSN: | 0010-1354 1730-6302 |
DOI: | 10.4064/cm120-1-2 |