Lyme Arthritis Synovial γδ T Cells Instruct Dendritic Cells via Fas Ligand

γδ T cells participate in the innate immune response to a variety of infectious microorganisms. They also link to the adaptive immune response through their induction of maturation of dendritic cells (DC) during the early phase of an immune response when the frequency of Ag-specific T cells is very...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2005-11, Vol.175 (9), p.5656-5665
Hauptverfasser: Collins, Cheryl, Wolfe, Julie, Roessner, Karen, Shi, Cuixia, Sigal, Leonard H., Budd, Ralph C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:γδ T cells participate in the innate immune response to a variety of infectious microorganisms. They also link to the adaptive immune response through their induction of maturation of dendritic cells (DC) during the early phase of an immune response when the frequency of Ag-specific T cells is very low. We observe that in the presence of Borrelia burgdorferi, synovial Vδ1 T cells from Lyme arthritis synovial fluid potently induce maturation of DC, including production of IL-12, and increased surface expression of CD40 and CD86. The activated DC are then able to stimulate the Vδ1 T cells to up-regulate CD25. Both of these processes are initiated primarily by Fas stimulation rather than CD40 activation of DC via high expression of Fas ligand by the Vδ1 T cells. DC are resistant to Fas-induced death due to expression of high levels of the Fas inhibitor c-FLIP. This effect serves to divert Fas-mediated signals from the caspase cascade to the ERK MAPK and NF-κB pathways. The findings affirm the importance of the interaction of certain T cell populations with DC during the early phases of the innate immune response. They also underscore the view that as levels of c-FLIP increase, Fas signaling can be diverted from induction of apoptosis to pathways leading to cell effector function.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.175.9.5656