The Role of MTJ-1 in Cell Surface Translocation of GRP78, a Receptor for α2-Macroglobulin-Dependent Signaling
MTJ-1 associates with a glucose-regulated protein of Mr ∼78,000(GRP78) in the endoplasmic reticulum and modulates GRP78 activity as a chaperone. GRP78 also exists on the cell surface membrane, where it is associated with a number of functions. MHC class I Ags on the cell surface are complexed to GRP...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 2005-02, Vol.174 (4), p.2092-2097 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MTJ-1 associates with a glucose-regulated protein of Mr ∼78,000(GRP78) in the endoplasmic reticulum and modulates GRP78 activity as a chaperone. GRP78 also exists on the cell surface membrane, where it is associated with a number of functions. MHC class I Ags on the cell surface are complexed to GRP78. GRP78 also serves as the receptor for α2-macroglobulin-dependent signaling and for uptake of certain pathogenic viruses. The means by which GRP78, lacking a transmembrane domain, can fulfill such functions is unclear. In this study we have examined the question of whether MTJ-1, a transmembrane protein, is involved in the translocation of GRP78 to the cell surface. MTJ-1 and GRP78 coimmunoprecipitated from macrophage plasma membrane lysates. Silencing of MTJ-1 gene expression greatly reduced MTJ-1 mRNA and protein levels, but also abolished cell surface localization of GRP78. Consequently, binding of the activated and receptor-recognized form of α2-macroglobulin to macrophages was greatly reduced, and activated and receptor-recognized form of α2-macroglobulin-induced calcium signaling was abolished in these cells. In conclusion, we show that in addition to assisting the chaperone GRP78 in protein quality control in the endoplasmic reticulum, MTJ-1 is essential for transport of GRP78 to the cell surface, which serves a number of functions in immune regulation and signal transduction. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.174.4.2092 |