Tumor necrosis factor as an activator of human granulocytes. Potentiation of the metabolisms triggered by the Ca2+-mobilizing agonists
TNF stimulated superoxide (O2-) release directly in human granulocytes in a dose-dependent manner (1 to 1000 U/ml), although its potency was weak. TNF-induced O2- release was inhibited by cAMP agonists or ionomycin, and was not accompanied with an increase in cytoplasmic free Ca2+ [( Ca2+]i) and mem...
Gespeichert in:
Veröffentlicht in: | The Journal of immunology (1950) 1989-03, Vol.142 (5), p.1678-1684 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | TNF stimulated superoxide (O2-) release directly in human granulocytes in a dose-dependent manner (1 to 1000 U/ml), although its potency was weak. TNF-induced O2- release was inhibited by cAMP agonists or ionomycin, and was not accompanied with an increase in cytoplasmic free Ca2+ [( Ca2+]i) and membrane potential changes (depolarization). These findings indicate that neither Ca2+ mobilization nor membrane depolarization is required for TNF-receptor-mediated cell activation. The pretreatment of human granulocytes with TNF enhanced O2- release and membrane depolarization in parallel stimulated by the receptor-mediated Ca2+-mobilizing agonists (FMLP, Con A, and wheat germ agglutinin) or the Ca2+ ionophore ionomycin, but not by PMA, a direct activator of protein kinase C. The optimal effect was obtained by pretreatment of cells with 100 U/ml TNF for 5 to 10 min at 37 degrees C, although the magnitude of enhancement varied according to the agonists used as subsequent stimuli. TNF did not affect an increase in [Ca2+]i stimulated by the Ca2+-mobilizing agonists, except Con A. Con A-induced increase in [Ca2+]i was enhanced by TNF in a dose-dependent manner. These diverse effects of TNF could be partly explained by the exclusive potentiation by TNF of the metabolic events triggered by an increase in [Ca2+]i. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.142.5.1678 |