Unified Legal Party Based Sentiment Analysis Pipeline
The rapid growth of text corpora across various domains has emerged a need and an opportunity to leverage Natural Language Processing to automate and efficiently streamline tedious manual tasks. Legal domain is one such text rich domain which suffers a rapid growth of text corpora and requirement fo...
Gespeichert in:
Veröffentlicht in: | International journal on advances in ICT for emerging regions (Online) 2022-11, Vol.15 (2), p.12-21 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The rapid growth of text corpora across various domains has emerged a need and an opportunity to leverage Natural Language Processing to automate and efficiently streamline tedious manual tasks. Legal domain is one such text rich domain which suffers a rapid growth of text corpora and requirement for natural language processing applications. In the pursuit of automating the prediction of the winning party of a court case among other usages, analysing sentiment in a party wise manner is beneficial for legal professionals. The two main sub-tasks in this process is to identify parties in a court case and afterwards analysing the respective sentiment towards each party. In this study we discuss the unification of two such models capable of doing the two task into a single pipeline to perform party based sentiment analysis efficiently |
---|---|
ISSN: | 1800-4156 2550-2794 |
DOI: | 10.4038/icter.v15i2.7247 |