On the Short Circuit Electro-Thermal Failure of 1.2 kV 4H-SiC MOSFETs with 3D Cell Layouts
In this manuscript, the short circuit (SC) capability of 1.2 kV vertical double diffused SiC MOSFET with different layout topologies is investigated. 3D finite element electro-thermal simulations have been carried out in order to assess the performance of five different cell topologies. It has been...
Gespeichert in:
Veröffentlicht in: | Materials science forum 2022-05, Vol.1062, p.632-636 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this manuscript, the short circuit (SC) capability of 1.2 kV vertical double diffused SiC MOSFET with different layout topologies is investigated. 3D finite element electro-thermal simulations have been carried out in order to assess the performance of five different cell topologies. It has been found that while the maximum drain current density observed during a SC event agrees well with the specific on-state resistance behaviour, the maximum temperature evolution in the unit cell follows the opposite trend. This behaviour can be explained by the relatively poor spreading of the carriers in the JFET region (of the ALL) at small cell pitches (~ 8um), which can lead to the formation of a filament with a high current density and heat generation. |
---|---|
ISSN: | 0255-5476 1662-9752 1662-9752 |
DOI: | 10.4028/p-fnekfr |