Large Area Growth of Cubic Silicon Carbide Using Close Space PVT by Application of Homoepitaxial Seeding

One setback that hinders the breakthrough of cubic silicon carbide is the lack of suitable seeding material for sublimation growth methods such as PVT. We present the growth of large area cubic silicon carbide material, up to a diameter of 100 mm, with a sublimation growth process called close space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science forum 2022-05, Vol.1062, p.74-78
Hauptverfasser: Schöler, Michael, Anzalone, Ruggero, Kollmuss, Manuel, Mauceri, Marco, Wellmann, Peter J., La Via, Francesco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One setback that hinders the breakthrough of cubic silicon carbide is the lack of suitable seeding material for sublimation growth methods such as PVT. We present the growth of large area cubic silicon carbide material, up to a diameter of 100 mm, with a sublimation growth process called close spaced PVT (CS-PVT). Freestanding 3C‑SiC seeding layers were grown by a homoepitaxial CVD process. Subsequently CS-PVT was used to grow crystals up to a thickness of 1 mm. To prevent backside sublimation a carbon containing layer was applied as protection. Due to the presence of a wafer bow as well as a rough backside of the used seeds additional effort was necessary to apply the coating. After growth no visible curvature was present independent of the grown layer thickness and sample size. Raman spectroscopy was performed on the seeds and grown crystals, showing that the overall stress level of the material was reduced by CS‑PVT.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/p-6ef373