Finite Difference Model for the Bond Behaviour of Polyparaphenylene Benzobisoxazole (PBO) Fibre-Reinforced Composite System for Retrofitting Masonry
This study addresses a numerical investigation of the bond behaviour exhibited by an FRCM system when subject to tensile and single direct shear tests. A reinforcement system, based on a polyparaphenylene benzobisoxazole (PBO) bi-directional fibre mesh and a mixed cement-pozzolanic mortar is selecte...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2022-04, Vol.916, p.425-432 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study addresses a numerical investigation of the bond behaviour exhibited by an FRCM system when subject to tensile and single direct shear tests. A reinforcement system, based on a polyparaphenylene benzobisoxazole (PBO) bi-directional fibre mesh and a mixed cement-pozzolanic mortar is selected. The system is characterized by the presence of coated glass-fibre yarns and dry polypropylene yarns alternated to the PBO yarns in the warp and weft directions, respectively. The mechanical characterization of composite constituent materials is carried out together with tensile and direct shear tests. Concerning mechanical interpretation of the tests, within a mode II fracture mechanics, and assuming a trilinear cohesive material law (CML), the stress transfer law between the fibre and the matrix is back calibrated from single direct shear test results. The CML obtained is employed into a finite-difference model developed for the purpose. Tensile tests are modelled providing adequate boundary conditions. Results satisfactorily agree with the tested behaviour of the FRCM system. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/p-6848f4 |