Predictive Analytics in Mental Health Leveraging LLM Embeddings and Machine Learning Models for Social Media Analysis
The prevalence of stress-related disorders has increased significantly in recent years, necessitating scalable methods to identify affected individuals. This paper proposes a novel approach utilizing large language models (LLMs), with a focus on OpenAI's generative pre-trained transformer (GPT-...
Gespeichert in:
Veröffentlicht in: | International journal of web services research 2024-01, Vol.21 (1), p.1-22 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The prevalence of stress-related disorders has increased significantly in recent years, necessitating scalable methods to identify affected individuals. This paper proposes a novel approach utilizing large language models (LLMs), with a focus on OpenAI's generative pre-trained transformer (GPT-3) embeddings and machine learning (ML) algorithms to classify social media posts as indicative or not of stress disorders. The aim is to create a preliminary screening tool leveraging online textual data. GPT-3 embeddings transformed posts into vector representations capturing semantic meaning and linguistic nuances. Various models, including support vector machines, random forests, XGBoost, KNN, and neural networks, were trained on a dataset of >10,000 labeled social media posts. The top model, a support vector machine, achieved 83% accuracy in classifying posts displaying signs of stress. |
---|---|
ISSN: | 1545-7362 1546-5004 |
DOI: | 10.4018/IJWSR.338222 |