A Fine-Grained Stateful Data Analytics Method Based on Resilient State Table
This article describes how stateful data analytic frameworks have emerged to provide fresh and low-latency results for big data processing. At present, it is desired to achieve the fine-grained data model in Spark data processing framework. However, Spark adopts coarse-grained data model in order to...
Gespeichert in:
Veröffentlicht in: | International journal of software science and computational intelligence 2018-04, Vol.10 (2), p.66-79 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article describes how stateful data analytic frameworks have emerged to provide fresh and low-latency results for big data processing. At present, it is desired to achieve the fine-grained data model in Spark data processing framework. However, Spark adopts coarse-grained data model in order to facilitate parallelization, it is challenging in dealing with the fine-grained data access in stateful data analytics. In this paper, the authors introduce a fine-grained stateful data component, Resilient State Table (RST), to Spark framework. For filling the gap between the coarse-grained data model in Spark and the fine-grained data access requirements in stateful data analytics, they devise the programming model of RST which interacts with Spark's coarse-grained memory representation seamlessly, and enable users to query/update the state entries in fine granularity with Spark-like programming interfaces. Performance evaluation experiments in various application fields demonstrate that their proposed solution achieves the improvements in latency, fault-tolerance, as well as scalability. |
---|---|
ISSN: | 1942-9045 1942-9037 |
DOI: | 10.4018/IJSSCI.2018040105 |