A Method of Subtopic Classification of Search Engine Suggests by Integrating a Topic Model and Word Embeddings

The background of this article is the issue of how to overview the knowledge of a given query keyword. Especially, the authors focus on concerns of those who search for web pages with a given query keyword. The Web search information needs of a given query keyword is collected through search engine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of software innovation 2018-07, Vol.6 (3), p.67-78
Hauptverfasser: Nie, Tian, Ding, Yi, Zhao, Chen, Lin, Youchao, Utsuro, Takehito
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The background of this article is the issue of how to overview the knowledge of a given query keyword. Especially, the authors focus on concerns of those who search for web pages with a given query keyword. The Web search information needs of a given query keyword is collected through search engine suggests. Given a query keyword, the authors collect up to around 1,000 suggests, while many of them are redundant. They classify redundant search engine suggests based on a topic model. However, one limitation of the topic model based classification of search engine suggests is that the granularity of the topics, i.e., the clusters of search engine suggests, is too coarse. In order to overcome the problem of the coarse-grained classification of search engine suggests, this article further applies the word embedding technique to the webpages used during the training of the topic model, in addition to the text data of the whole Japanese version of Wikipedia. Then, the authors examine the word embedding based similarity between search engines suggests and further classify search engine suggests within a single topic into finer-grained subtopics based on the similarity of word embeddings. Evaluation results prove that the proposed approach performs well in the task of subtopic classification of search engine suggests.
ISSN:2166-7160
2166-7179
DOI:10.4018/IJSI.2018070105