Speech Emotion Analysis of Different Age Groups Using Clustering Techniques
The shape, length, and size of the vocal tract and vocal folds vary with the age of the human being. The variation may be of different age or sickness or some other conditions. Arguably, the features extracted from the utterances for the recognition task may differ for different age group. It compli...
Gespeichert in:
Veröffentlicht in: | International journal of information retrieval research 2018-01, Vol.8 (1), p.69-85 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The shape, length, and size of the vocal tract and vocal folds vary with the age of the human being. The variation may be of different age or sickness or some other conditions. Arguably, the features extracted from the utterances for the recognition task may differ for different age group. It complicates further for different emotions. The recognition system demands suitable feature extraction and clustering techniques that can separate their emotional utterances. Psychologists, criminal investigators, professional counselors, law enforcement agencies and a host of other such entities may find such analysis useful. In this article, the emotion study has been evaluated for three different age groups of people using the basic age- dependent features like pitch, speech rate, and log energy. The feature sets have been clustered for different age groups by utilizing K-means and Fuzzy c-means (FCM) algorithm for the boredom, sadness, and anger states. K-means algorithm has outperformed the FCM algorithm in terms of better clustering and lower computation time as the authors' results suggest. |
---|---|
ISSN: | 2155-6377 2155-6385 |
DOI: | 10.4018/IJIRR.2018010105 |