A Framework for Feature Selection Using Natural Language Processing for User Profile Learning for Recommendations of Healthcare-Related Content

This paper presents the work done on recommendations of healthcare related journal papers by understanding the semantics of terms from the papers referred by users in past. In other words, user profiles based on user interest within the healthcare domain are constructed from the kind of journal pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of business analytics 2022-07, Vol.9 (3), p.1-17
Hauptverfasser: Pendse, Ravi, Tanwar, Mona, Khatri, Sunil Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents the work done on recommendations of healthcare related journal papers by understanding the semantics of terms from the papers referred by users in past. In other words, user profiles based on user interest within the healthcare domain are constructed from the kind of journal papers read by the users. Multiple user profiles are constructed for each user based on different categories of papers read by the users. The proposed approach goes to the granular level of extrinsic and intrinsic relationship between terms and clusters highly semantically related relevant domain terms where each cluster represents a user interest area. The semantic analysis of terms is done starting from co-occurrence analysis to extract the intra-couplings between terms and then the inter-couplings are extracted from the intra-couplings and then finally clusters of highly related terms are formed. The experiments showed improved precision for the proposed approach as compared to the state-of-the-art technique with a mean reciprocal rank of 0.76.
ISSN:2334-4547
2334-4555
DOI:10.4018/IJBAN.292059