On the Classification Problem for Nuclear C-Algebras

We exhibit a counterexample to Elliott's classification conjecture for simple, separable, and nuclear C*-algebras whose construction is elementary, and demonstrate the necessity of extremely fine invariants in distinguishing both approximate unitary equivalence classes of automorphisms of such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics 2008-05, Vol.167 (3), p.1029-1044
1. Verfasser: Toms, Andrew S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We exhibit a counterexample to Elliott's classification conjecture for simple, separable, and nuclear C*-algebras whose construction is elementary, and demonstrate the necessity of extremely fine invariants in distinguishing both approximate unitary equivalence classes of automorphisms of such algebras and isomorphism classes of the algebras themselves. The consequences for the program to classify nuclear C*-algebras are far-reaching: one has, among other things, that existing results on the classification of simple, unital AH algebras via the Elliott invariant of K-theoretic data are the best possible, and that these cannot be improved by the addition of continuous homotopy invariant functors to the Elliott invariant.
ISSN:0003-486X
1939-8980
DOI:10.4007/annals.2008.167.1029