Isoparametric Hypersurfaces with Four Principal Curvatures
Let M be an isoparametric hypersurface in the sphere $S^{n}$ with four distinct principal curvatures. Münzner showed that the four principal curvatures can have at most two distinct multiplicities m₁, m₂, and Stolz showed that the pair (m₁, m₂) must either be (2, 2), (4, 5), or be equal to the multi...
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2007-07, Vol.166 (1), p.1-76 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be an isoparametric hypersurface in the sphere $S^{n}$ with four distinct principal curvatures. Münzner showed that the four principal curvatures can have at most two distinct multiplicities m₁, m₂, and Stolz showed that the pair (m₁, m₂) must either be (2, 2), (4, 5), or be equal to the multiplicities of an isoparametric hypersurface of FKM-type, constructed by Ferus, Karcher and Münzner from orthogonal representations of Clifford algebras. In this paper, we prove that if the multiplicities satisfy m₂ ≥ 2m₁ - 1, then the isoparametric hypersurface M must be of FKM-type. Together with known results of Takagi for the case m₁ = 1, and Ozeki and Takeuchi for m₁ = 2, this handles all possible pairs of multiplicities except for four cases, for which the classification problem remains open. |
---|---|
ISSN: | 0003-486X 1939-8980 |
DOI: | 10.4007/annals.2007.166.1 |