Automorphism Groups of Finite Dimensional Simple Algebras
We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to$\text{Aut}(A\otimes _{k}K)$, where A is a finite dimensional simple algebra over k.
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2003-11, Vol.158 (3), p.1041-1065 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to$\text{Aut}(A\otimes _{k}K)$, where A is a finite dimensional simple algebra over k. |
---|---|
ISSN: | 0003-486X |
DOI: | 10.4007/annals.2003.158.1041 |