Automorphism Groups of Finite Dimensional Simple Algebras

We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to$\text{Aut}(A\otimes _{k}K)$, where A is a finite dimensional simple algebra over k.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics 2003-11, Vol.158 (3), p.1041-1065
Hauptverfasser: Gordeev, Nikolai L., Popov, Vladimir L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if a field k contains sufficiently many elements (for instance, if k is infinite), and K is an algebraically closed field containing k, then every linear algebraic k-group over K is k-isomorphic to$\text{Aut}(A\otimes _{k}K)$, where A is a finite dimensional simple algebra over k.
ISSN:0003-486X
DOI:10.4007/annals.2003.158.1041