Brain Tumor Classification Deep Learning Model Using Neural Networks
The timely diagnosis of brain tumors is currently a complicated task. The objective was to build an image classification model to detect the existence or not of brain tumors by adding a classification header to a ResNet-50 architecture. The CRISP-DM methodology was used for data mining. A dataset of...
Gespeichert in:
Veröffentlicht in: | International Journal of Online and Biomedical Engineering 2023-01, Vol.19 (9), p.81-92 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The timely diagnosis of brain tumors is currently a complicated task. The objective was to build an image classification model to detect the existence or not of brain tumors by adding a classification header to a ResNet-50 architecture. The CRISP-DM methodology was used for data mining. A dataset of 3847 brain MRI images was used, 2770 images for training, 500 for validation, and 577 for testing. The images were resized to a 256 × 256 scale and then a data generator is created that is responsible for dividing pixels by 255. The training was performed and then the evaluation process was carried out, obtaining an accuracy percentage of 92% and a precision of 94% in the evaluation process. It is concluded that the proposed CNN model composed of a head with a ResNet50 architecture and a seven-layer convolutional network achieves adequate accuracy, becoming an efficient and complementary proposal to other models developed in previous works. |
---|---|
ISSN: | 2626-8493 2626-8493 |
DOI: | 10.3991/ijoe.v19i09.38819 |