Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout

Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Engineering Pedagogy 2023-01, Vol.13 (7), p.128-144
Hauptverfasser: Smaili, El Miloud, Daoudi, Mohamed, Oumaira, Ilham, Azzouzi, Salma, Charaf, Moulay El Hassan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue 7
container_start_page 128
container_title International Journal of Engineering Pedagogy
container_volume 13
creator Smaili, El Miloud
Daoudi, Mohamed
Oumaira, Ilham
Azzouzi, Salma
Charaf, Moulay El Hassan
description Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.
doi_str_mv 10.3991/ijep.v13i7.40075
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijep_v13i7_40075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijep_v13i7_40075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-15a891d9df9f4d6d322c565097ef21a2fc95aba0842becb50ebc0c7be9e85e3c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOObuHvMPtCZp0ybHUX8NOrrDxGNJk2-0ozYl6Sr-93ZT0Hd5Dx48Hh-EbimJEynpXXuAIZ5o0uZxSkjOL9CCUcmiVAhy-S9fo1UIBzJLsIxSvkCve_epvAlY9Xht1DC2E-ASlO_b_g1vnYEOH8MpV3P3obq_cqfG94BHh3ceJuhHvK2qAt97N7jjeIOurOoCrH59iV4eH_bFc1RWT5tiXUaacjlGlCshqZHGSpuazCSMaZ5xInOwjCpmteSqUUSkrAHdcAKNJjpvQILgkOhkicjPrvYuBA-2Hvx803_VlNQnNvWJTX1mU5_ZJN9bWVnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</creator><creatorcontrib>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</creatorcontrib><description>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</description><identifier>ISSN: 2192-4880</identifier><identifier>EISSN: 2192-4880</identifier><identifier>DOI: 10.3991/ijep.v13i7.40075</identifier><language>eng</language><ispartof>International Journal of Engineering Pedagogy, 2023-01, Vol.13 (7), p.128-144</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0388-461X ; 0000-0002-5615-600X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Smaili, El Miloud</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Oumaira, Ilham</creatorcontrib><creatorcontrib>Azzouzi, Salma</creatorcontrib><creatorcontrib>Charaf, Moulay El Hassan</creatorcontrib><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><title>International Journal of Engineering Pedagogy</title><description>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</description><issn>2192-4880</issn><issn>2192-4880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOObuHvMPtCZp0ybHUX8NOrrDxGNJk2-0ozYl6Sr-93ZT0Hd5Dx48Hh-EbimJEynpXXuAIZ5o0uZxSkjOL9CCUcmiVAhy-S9fo1UIBzJLsIxSvkCve_epvAlY9Xht1DC2E-ASlO_b_g1vnYEOH8MpV3P3obq_cqfG94BHh3ceJuhHvK2qAt97N7jjeIOurOoCrH59iV4eH_bFc1RWT5tiXUaacjlGlCshqZHGSpuazCSMaZ5xInOwjCpmteSqUUSkrAHdcAKNJjpvQILgkOhkicjPrvYuBA-2Hvx803_VlNQnNvWJTX1mU5_ZJN9bWVnV</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Smaili, El Miloud</creator><creator>Daoudi, Mohamed</creator><creator>Oumaira, Ilham</creator><creator>Azzouzi, Salma</creator><creator>Charaf, Moulay El Hassan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0388-461X</orcidid><orcidid>https://orcid.org/0000-0002-5615-600X</orcidid></search><sort><creationdate>20230101</creationdate><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><author>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-15a891d9df9f4d6d322c565097ef21a2fc95aba0842becb50ebc0c7be9e85e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smaili, El Miloud</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Oumaira, Ilham</creatorcontrib><creatorcontrib>Azzouzi, Salma</creatorcontrib><creatorcontrib>Charaf, Moulay El Hassan</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Engineering Pedagogy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smaili, El Miloud</au><au>Daoudi, Mohamed</au><au>Oumaira, Ilham</au><au>Azzouzi, Salma</au><au>Charaf, Moulay El Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</atitle><jtitle>International Journal of Engineering Pedagogy</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>128</spage><epage>144</epage><pages>128-144</pages><issn>2192-4880</issn><eissn>2192-4880</eissn><abstract>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</abstract><doi>10.3991/ijep.v13i7.40075</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0388-461X</orcidid><orcidid>https://orcid.org/0000-0002-5615-600X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2192-4880
ispartof International Journal of Engineering Pedagogy, 2023-01, Vol.13 (7), p.128-144
issn 2192-4880
2192-4880
language eng
recordid cdi_crossref_primary_10_3991_ijep_v13i7_40075
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20an%20Adaptive%20Learning%20Model%20using%20Optimal%20Learning%20Paths%20to%20Prevent%20MOOC%20Dropout&rft.jtitle=International%20Journal%20of%20Engineering%20Pedagogy&rft.au=Smaili,%20El%20Miloud&rft.date=2023-01-01&rft.volume=13&rft.issue=7&rft.spage=128&rft.epage=144&rft.pages=128-144&rft.issn=2192-4880&rft.eissn=2192-4880&rft_id=info:doi/10.3991/ijep.v13i7.40075&rft_dat=%3Ccrossref%3E10_3991_ijep_v13i7_40075%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true