Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout
Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements...
Gespeichert in:
Veröffentlicht in: | International Journal of Engineering Pedagogy 2023-01, Vol.13 (7), p.128-144 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | 7 |
container_start_page | 128 |
container_title | International Journal of Engineering Pedagogy |
container_volume | 13 |
creator | Smaili, El Miloud Daoudi, Mohamed Oumaira, Ilham Azzouzi, Salma Charaf, Moulay El Hassan |
description | Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths. |
doi_str_mv | 10.3991/ijep.v13i7.40075 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijep_v13i7_40075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijep_v13i7_40075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c159t-15a891d9df9f4d6d322c565097ef21a2fc95aba0842becb50ebc0c7be9e85e3c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOObuHvMPtCZp0ybHUX8NOrrDxGNJk2-0ozYl6Sr-93ZT0Hd5Dx48Hh-EbimJEynpXXuAIZ5o0uZxSkjOL9CCUcmiVAhy-S9fo1UIBzJLsIxSvkCve_epvAlY9Xht1DC2E-ASlO_b_g1vnYEOH8MpV3P3obq_cqfG94BHh3ceJuhHvK2qAt97N7jjeIOurOoCrH59iV4eH_bFc1RWT5tiXUaacjlGlCshqZHGSpuazCSMaZ5xInOwjCpmteSqUUSkrAHdcAKNJjpvQILgkOhkicjPrvYuBA-2Hvx803_VlNQnNvWJTX1mU5_ZJN9bWVnV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</creator><creatorcontrib>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</creatorcontrib><description>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</description><identifier>ISSN: 2192-4880</identifier><identifier>EISSN: 2192-4880</identifier><identifier>DOI: 10.3991/ijep.v13i7.40075</identifier><language>eng</language><ispartof>International Journal of Engineering Pedagogy, 2023-01, Vol.13 (7), p.128-144</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0388-461X ; 0000-0002-5615-600X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Smaili, El Miloud</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Oumaira, Ilham</creatorcontrib><creatorcontrib>Azzouzi, Salma</creatorcontrib><creatorcontrib>Charaf, Moulay El Hassan</creatorcontrib><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><title>International Journal of Engineering Pedagogy</title><description>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</description><issn>2192-4880</issn><issn>2192-4880</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOObuHvMPtCZp0ybHUX8NOrrDxGNJk2-0ozYl6Sr-93ZT0Hd5Dx48Hh-EbimJEynpXXuAIZ5o0uZxSkjOL9CCUcmiVAhy-S9fo1UIBzJLsIxSvkCve_epvAlY9Xht1DC2E-ASlO_b_g1vnYEOH8MpV3P3obq_cqfG94BHh3ceJuhHvK2qAt97N7jjeIOurOoCrH59iV4eH_bFc1RWT5tiXUaacjlGlCshqZHGSpuazCSMaZ5xInOwjCpmteSqUUSkrAHdcAKNJjpvQILgkOhkicjPrvYuBA-2Hvx803_VlNQnNvWJTX1mU5_ZJN9bWVnV</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Smaili, El Miloud</creator><creator>Daoudi, Mohamed</creator><creator>Oumaira, Ilham</creator><creator>Azzouzi, Salma</creator><creator>Charaf, Moulay El Hassan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0388-461X</orcidid><orcidid>https://orcid.org/0000-0002-5615-600X</orcidid></search><sort><creationdate>20230101</creationdate><title>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</title><author>Smaili, El Miloud ; Daoudi, Mohamed ; Oumaira, Ilham ; Azzouzi, Salma ; Charaf, Moulay El Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c159t-15a891d9df9f4d6d322c565097ef21a2fc95aba0842becb50ebc0c7be9e85e3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smaili, El Miloud</creatorcontrib><creatorcontrib>Daoudi, Mohamed</creatorcontrib><creatorcontrib>Oumaira, Ilham</creatorcontrib><creatorcontrib>Azzouzi, Salma</creatorcontrib><creatorcontrib>Charaf, Moulay El Hassan</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Engineering Pedagogy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smaili, El Miloud</au><au>Daoudi, Mohamed</au><au>Oumaira, Ilham</au><au>Azzouzi, Salma</au><au>Charaf, Moulay El Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout</atitle><jtitle>International Journal of Engineering Pedagogy</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>13</volume><issue>7</issue><spage>128</spage><epage>144</epage><pages>128-144</pages><issn>2192-4880</issn><eissn>2192-4880</eissn><abstract>Currently, massive open online courses (MOOCs) are experiencing major developments and arebecoming increasingly popular in distance learning programs. The goal is to break down inequalitiesand disseminate knowledge to everyone by creating a space for exchange and interaction.Despite the improvements to this educational model, MOOCs still have low retention rates, whichcan be attributed to a variety of factors, including learners’ heterogeneity. The paper aims toaddress the issue of low retention rates in MOOCs by introducing an innovative prediction modelthat provides the best (optimal) learning path for at-risk learners. For this purpose, learners at riskof dropping out are identified, and their courses are adapted to meet their needs and skills. A casestudy is presented to validate the effectiveness of our approach using classification algorithms forprediction and the ant colony optimization (ACO) algorithm to optimize learners’ paths.</abstract><doi>10.3991/ijep.v13i7.40075</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0388-461X</orcidid><orcidid>https://orcid.org/0000-0002-5615-600X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2192-4880 |
ispartof | International Journal of Engineering Pedagogy, 2023-01, Vol.13 (7), p.128-144 |
issn | 2192-4880 2192-4880 |
language | eng |
recordid | cdi_crossref_primary_10_3991_ijep_v13i7_40075 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Towards an Adaptive Learning Model using Optimal Learning Paths to Prevent MOOC Dropout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A14%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Towards%20an%20Adaptive%20Learning%20Model%20using%20Optimal%20Learning%20Paths%20to%20Prevent%20MOOC%20Dropout&rft.jtitle=International%20Journal%20of%20Engineering%20Pedagogy&rft.au=Smaili,%20El%20Miloud&rft.date=2023-01-01&rft.volume=13&rft.issue=7&rft.spage=128&rft.epage=144&rft.pages=128-144&rft.issn=2192-4880&rft.eissn=2192-4880&rft_id=info:doi/10.3991/ijep.v13i7.40075&rft_dat=%3Ccrossref%3E10_3991_ijep_v13i7_40075%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |