Stability of the standing waves of the concentrated NLSE in dimension two

In this paper we will continue the analysis of two dimensional Schrodinger equation with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up phenomenon has two peculiar features: the energy threshold under which all solutions blow up is strictly negative a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in Engineering 2021-01, Vol.3 (2), p.1-15
Hauptverfasser: Adami, Riccardo, Carlone, Raffaele, Correggi, Michele, Tentarelli, Lorenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we will continue the analysis of two dimensional Schrodinger equation with a fixed, pointwise, nonlinearity started in [2, 13]. In this model, the occurrence of a blow-up phenomenon has two peculiar features: the energy threshold under which all solutions blow up is strictly negative and coincides with the infimum of the energy of the standing waves; there is no critical power nonlinearity, i.e., for every power there exist blow-up solutions. Here we study the stability properties of stationary states to verify whether the anomalies mentioned before have any counterpart on the stability features.
ISSN:2640-3501
2640-3501
DOI:10.3934/mine.2021011