Computing mod $ \ell $ Galois representations associated to modular forms for small primes

In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIMS mathematics 2023, Vol.8 (12), p.28766-28779
Hauptverfasser: Tian, Peng, Tran, Ha Thanh Nguyen, Duong, Dung Hoang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose an algorithm for computing mod $ \ell $ Galois representations associated to modular forms of weight $ k $ when $ \ell < k-1 $. We also present the corresponding results for the projective Galois representations. Moreover, we apply our algorithms to explicitly compute the mod $ \ell $ projective Galois representations associated to $ \Delta_{k} $ for $ k = 16, 20, 22, 26 $ and all the unexceptional primes $ \ell $, with $ \ell < k-1 $. As an application, for $ k = 16, 20, 22, 26 $, we obtain the new bounds $ B_k $ of $ n $ such that $ a_n(\Delta_k)\ne0 $ for all $ n < B_k $.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20231473