L^p $-theory for the $ {\partial }\overline{\partial} $-equation and isomorphisms results
We establish an $ L^{p}_{\rm loc} $-existence theorem for the $ {\partial }\overline{\partial} $-equation on a half-space of $ \mathbb C^n $. The result is achieved for forms of class $ L^{p}_{\rm loc} $ as well as for those forms in the scale of $ W^{1, p}_{\rm loc} $-Sobolev spaces and admitting d...
Gespeichert in:
Veröffentlicht in: | Electronic research archive 2025, Vol.33 (1), p.68-86 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish an $ L^{p}_{\rm loc} $-existence theorem for the $ {\partial }\overline{\partial} $-equation on a half-space of $ \mathbb C^n $. The result is achieved for forms of class $ L^{p}_{\rm loc} $ as well as for those forms in the scale of $ W^{1, p}_{\rm loc} $-Sobolev spaces and admitting distributional boundary values. Some isomorphisms and regularity results in relation to de Rham, Bott–Chern, and Aeppli cohomology groups are moreover obtained. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2025004 |