A simple virtual element-based flux recovery on quadtree

In this paper, we introduce a simple local flux recovery for $ \mathcal{Q}_k $ finite element of a scalar coefficient diffusion equation on quadtree meshes, with no restriction on the irregularities of hanging nodes. The construction requires no specific ad hoc tweaking for hanging nodes on $ l $-ir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2021-12, Vol.29 (6), p.3629-3647
1. Verfasser: Cao, Shuhao
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce a simple local flux recovery for $ \mathcal{Q}_k $ finite element of a scalar coefficient diffusion equation on quadtree meshes, with no restriction on the irregularities of hanging nodes. The construction requires no specific ad hoc tweaking for hanging nodes on $ l $-irregular ($ l\geq 2 $) meshes thanks to the adoption of virtual element families. The rectangular elements with hanging nodes are treated as polygons as in the flux recovery context. An efficient a posteriori error estimator is then constructed based on the recovered flux, and its reliability is proved under common assumptions, both of which are further verified in numerics.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2021054