Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect

This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2021-11, Vol.29 (5), p.3017-3030
Hauptverfasser: Chang, Meng-Xue, Han, Bang-Sheng, Fan, Xiao-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a unique solution for any non-negative bounded initial value by using Gronwall's inequality. Moreover, the boundedness of the solution is obtained by means of the auxiliary problem. Finally, in the case that the initial data with compactly supported, we analyze the asymptotic behavior of the solution.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2021024