Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect
This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a...
Gespeichert in:
Veröffentlicht in: | Electronic Research Archive 2021-11, Vol.29 (5), p.3017-3030 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is devoted to studying the Cauchy problem corresponding to the nonlocal bistable reaction diffusion equation. It is the first attempt to use the method of comparison principle to study the well-posedness for the nonlocal bistable reaction-diffusion equation. We show that the problem has a unique solution for any non-negative bounded initial value by using Gronwall's inequality. Moreover, the boundedness of the solution is obtained by means of the auxiliary problem. Finally, in the case that the initial data with compactly supported, we analyze the asymptotic behavior of the solution. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2021024 |