On $ n $-slice algebras and related algebras
The \begin{document}$ n $\end{document}-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of \begin{document}$ n $\end{document}-slice algebras via their \begin{document}$ (n+1) $\end{document}-preproj...
Gespeichert in:
Veröffentlicht in: | Electronic Research Archive 2021-09, Vol.29 (4), p.2687-2718 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The \begin{document}$ n $\end{document}-slice algebra is introduced as a generalization of path algebra in higher dimensional representation theory. In this paper, we give a classification of \begin{document}$ n $\end{document}-slice algebras via their \begin{document}$ (n+1) $\end{document}-preprojective algebras and the trivial extensions of their quadratic duals. One can always relate tame \begin{document}$ n $\end{document}-slice algebras to the McKay quiver of a finite subgroup of \begin{document}$ \mathrm{GL}(n+1, \mathbb C) $\end{document}. In the case of \begin{document}$ n = 2 $\end{document}, we describe the relations for the \begin{document}$ 2 $\end{document}-slice algebras related to the McKay quiver of finite Abelian subgroups of \begin{document}$ \mathrm{SL}(3, \mathbb C) $\end{document} and of the finite subgroups obtained from embedding \begin{document}$ \mathrm{SL}(2, \mathbb C) $\end{document} into \begin{document}$ \mathrm{SL}(3,\mathbb C) $\end{document}. |
---|---|
ISSN: | 2688-1594 2688-1594 |
DOI: | 10.3934/era.2021009 |