Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays

In this paper, we investigate a class of stochastic recurrent neural networks with discrete and distributed delays for both biological and mathematical interests. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions so that the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2021-06, Vol.29 (2), p.2187-2221
Hauptverfasser: Sui, Meiyu, Wang, Yejuan, Kloeden, Peter E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate a class of stochastic recurrent neural networks with discrete and distributed delays for both biological and mathematical interests. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions so that the uniqueness of the Cauchy problem fails to be true. Moreover, the existence of pullback attractors with or without periodicity is presented for the multi-valued noncompact random dynamical system. In particular, a new method for checking the asymptotical compactness of solutions to the class of nonautonomous stochastic lattice systems with infinite delay is used.
ISSN:2688-1594
2688-1594
DOI:10.3934/era.2020112