Phenotypic Diversity of Root Characteristics in Recombinant Inbred Lines of Cross Between Lowland and Highland Rice Varieties for Drought Tolerance Potential
Background and Objective: Breeding between highland and lowland rice varieties is one of the strategic breeding of lowland rice for enhancing drought-tolerant capacity through root structure improvement. The objective of this study was to evaluate the phenotypic diversity of rice root traits in pot...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of biological sciences 2021, Vol.24 (11), p.1152-1161 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background and Objective: Breeding between highland and lowland rice varieties is one of the strategic breeding of lowland rice for enhancing drought-tolerant capacity through root structure improvement. The objective of this study was to evaluate the phenotypic diversity of rice root traits in pot screening compared to the lowland parent. Materials and Methods: The basket method was utilized in pot cultivation to evaluate the 100 of F7 Recombinant Inbred Lines (RILs) derived through single seed descent method from a cross between lowland rice, RD49 variety and upland rice, Payaleumgaeng (PLG) variety. The two parents and F7 progenies were evaluated for the number of shallow roots (SRN) and the number of deep roots (DRN), together with other traits which were the number of total roots (TRN), the Ratio of Deep Rooting (RDR), maximum Root Length (RL), Root Dry Weight (RDW), Shoot Dry Weight (SDW), the ratio of Root to Shoot Weight (RSR) and Plant Height (PH). Results: The result showed that PLG had significantly higher SRN, DRN, TRN and RDR than RD49. The distribution of these traits showed slightly positive skewness in DRN, RDR, RDW, SDW and RSR and negative skewness in SRN, TRN, RL and PH. However, some lines in this RIL population displayed better performance of root traits compared to both parents. Principal Component Analysis (PCA) of DRN, SRN, TRN and RDR in this population showed a distinctly different pattern among both parents. Most of the selected lines had superior RDR over RD49 and had various root characteristics patterns due to the diverse PCA coordinates. The yield trial of some breeding lines in this cross show superior yield over RD49 under drought-prone cultivation area. Conclusion: This study showed broad phenotypic diversity in the population constructed through single seed descent selection for enhancing deep root structure in rice for drought adaptation. |
---|---|
ISSN: | 1028-8880 1812-5735 |
DOI: | 10.3923/pjbs.2021.1152.1161 |