The geometry of hemi-slant submanifolds of a locally product Riemannian manifold

In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some applications of this result. We get a necessary and sufficient condition for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Turkish journal of mathematics 2015-01, Vol.39, p.268-284
Hauptverfasser: TAŞTAN, Hakan Mete, ÖZDEMİR, Fatma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we study hemi-slant submanifolds of a locally product Riemannian manifold. We prove that the anti-invariant distribution involved in the definition of hemi-slant submanifold is integrable and give some applications of this result. We get a necessary and sufficient condition for a proper hemi-slant submanifold to be a hemi-slant product. We also study these types of submanifolds with parallel canonical structures. Moreover, we give two characterization theorems for the totally umbilical proper hemi-slant submanifolds. Finally, we obtain a basic inequality involving Ricci curvature and the squared mean curvature of a hemi-slant submanifold of a certain type of locally product Riemannian manifolds.
ISSN:1303-6149
1300-0098
1303-6149
DOI:10.3906/mat-1407-18