Universal inequalities and bounds for weighted eigenvalues of the Schrödinger operator on the Heisenberg group
For a bounded domain W in the Heisenberg group Hn, we investigate the Dirichlet weighted eigenvalue problem of the Schrödinger operator - DHn +V, where DHn is the Kohn Laplacian and V is a nonnegative potential. We establish a Yang-type inequality for eigenvalues of this problem. It contains the sha...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2011-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a bounded domain W in the Heisenberg group Hn, we investigate the Dirichlet weighted eigenvalue problem of the Schrödinger operator - DHn +V, where DHn is the Kohn Laplacian and V is a nonnegative potential. We establish a Yang-type inequality for eigenvalues of this problem. It contains the sharpest result for DHn in [17] of Soufi, Harrel II and Ilias. Some estimates for upper bounds of higher order eigenvalues and the gaps of any two consecutive eigenvalues are also derived. Our results are related to some previous results for the Laplacian D and the Schrödinger operator -D+V on a domain in Rn and other manifolds. |
---|---|
ISSN: | 1303-6149 1300-0098 1303-6149 |
DOI: | 10.3906/mat-0910-98 |