Geometrical objects associated to a substructure
Several geometric objects, namely global tensor fields of (1,1)-type, linear connections and Riemannian metrics, associated to a given substructure on a splitting of tangent bundle, are studied. From the point of view of lifting to entire manifold, two types of polynomial substructures are distingui...
Gespeichert in:
Veröffentlicht in: | Turkish journal of mathematics 2011-01 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Several geometric objects, namely global tensor fields of (1,1)-type, linear connections and Riemannian metrics, associated to a given substructure on a splitting of tangent bundle, are studied. From the point of view of lifting to entire manifold, two types of polynomial substructures are distinguished according to the vanishing of not of the sum of the coefficients. Conditions of parallelism for the extended structure with respect to some remarkable linear connections are given in two forms, firstly in a global description and secondly using the decomposition in distributions. A generalization of both Hermitian and anti-Hermitian geometry is proposed. |
---|---|
ISSN: | 1303-6149 1300-0098 1303-6149 |
DOI: | 10.3906/mat-0710-33 |