Characterizing the Ordinary Broad-line Type Ic SN 2023pel from the Energetic GRB 230812B
We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity ( z = 0.36) and high energy ( E γ ,iso ∼ 10 53 erg) make it an important event to study as a probe of the connection between massive star core c...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2024-01, Vol.960 (2), p.L18 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report observations of the optical counterpart of the long gamma-ray burst (GRB) GRB 230812B and its associated supernova (SN) SN 2023pel. The proximity (
z
= 0.36) and high energy (
E
γ
,iso
∼ 10
53
erg) make it an important event to study as a probe of the connection between massive star core collapse and relativistic jet formation. With a phenomenological power-law model for the optical afterglow, we find a late-time flattening consistent with the presence of an associated SN. SN 2023pel has an absolute peak
r
-band magnitude of
M
r
= −19.46 ± 0.18 mag (about as bright as SN 1998bw) and evolves on quicker timescales. Using a radioactive heating model, we derive a nickel mass powering the SN of
M
Ni
= 0.38 ± 0.01
M
⊙
and a peak bolometric luminosity of
L
bol
∼ 1.3 × 10
43
erg s
−1
. We confirm SN 2023pel’s classification as a broad-line Type Ic SN with a spectrum taken 15.5 days after its peak in the
r
band and derive a photospheric expansion velocity of
v
ph
= 11,300 ± 1600 km s
−1
at that phase. Extrapolating this velocity to the time of maximum light, we derive the ejecta mass
M
ej
= 1.0 ± 0.6
M
⊙
and kinetic energy
E
KE
=
1.3
−
1.2
+
3.3
×
10
51
erg
. We find that GRB 230812B/SN 2023pel has SN properties that are mostly consistent with the overall GRB-SN population. The lack of correlations found in the GRB-SN population between SN brightness and
E
γ
,iso
for their associated GRBs across a broad range of 7 orders of magnitude provides further evidence that the central engine powering the relativistic ejecta is not coupled to the SN powering mechanism in GRB-SN systems. |
---|---|
ISSN: | 2041-8205 2041-8213 2041-8213 |
DOI: | 10.3847/2041-8213/ad16e7 |