Gamma-Ray-emitting Narrow-line Seyfert 1 Galaxies in the Sloan Digital Sky Survey

The detection of significant γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1s) galaxies enables us to study jets in environments different than those in blazars. However, due to the small number of known γ-ray-emitting NLSy1 (γ-NLSy1) galaxies, a comprehensive study could not be performe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2018-01, Vol.853 (1), p.L2
Hauptverfasser: Paliya, Vaidehi S., Ajello, M., Rakshit, S., Mandal, Amit Kumar, Stalin, C. S., Kaur, A., Hartmann, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The detection of significant γ-ray emission from radio-loud narrow-line Seyfert 1 (NLSy1s) galaxies enables us to study jets in environments different than those in blazars. However, due to the small number of known γ-ray-emitting NLSy1 (γ-NLSy1) galaxies, a comprehensive study could not be performed. Here, we report the first detection of significant γ-ray emission from four active galactic nuclei (AGNs), recently classified as NLSy1 from their Sloan Digital Sky Survey (SDSS) optical spectrum. Three flat-spectrum radio quasars (FSRQs) present in the third Large Area Telescope AGN catalog (3LAC) are also found as γ-NLSy1 galaxies. Comparing the γ-ray properties of these objects with 3LAC blazars reveals their spectral shapes to be similar to FSRQs, however, with low γ-ray luminosity ( 1046-47 erg s−1). In the Wide-field Infrared Survey Explorer color-color diagram, these objects occupy a region mainly populated by FSRQs. Using the Hβ emission line parameters, we find that on average γ-NLSy1 have smaller black hole masses than FSRQs at similar redshifts. In the low-resolution SDSS image of one of the γ-NLSy1 source, we find the evidence of an extended structure. We conclude by noting that overall many observational properties of γ-NLSy1 sources are similar to FSRQs, and therefore these objects could be their low black hole mass counterparts, as predicted in the literature.
ISSN:2041-8205
2041-8213
DOI:10.3847/2041-8213/aaa5ab