Formation of the Interstellar Sugar Precursor, (Z)-1,2-Ethenediol, through Radical Reactions on Dust Grains

In recent years, the continued detection of complex organic molecules of prebiotic interest has refueled the interest in a panspermic origin of life. The prebiotic molecule glyceraldehyde is proposed to be formed from (Z)-1,2-ethenediol, a molecule recently detected toward the G+0.693-0.027 molecula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-10, Vol.974 (1), p.129
Hauptverfasser: del Valle, Juan Carlos, Redondo, Pilar, Kästner, Johannes, Molpeceres, Germán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In recent years, the continued detection of complex organic molecules of prebiotic interest has refueled the interest in a panspermic origin of life. The prebiotic molecule glyceraldehyde is proposed to be formed from (Z)-1,2-ethenediol, a molecule recently detected toward the G+0.693-0.027 molecular cloud at the galactic center. In this work, we computationally simulate the formation of (Z)-1,2-ethenediol from vinyl alcohol on the surface of amorphous solid water in a two-step synthesis involving an OH addition and an H abstraction reaction. In total, we considered all reaction possibilities of the 1,1- and 1,2-OH addition to vinyl alcohol followed by H abstraction or H addition reactions on the resulting radicals. The combination of these reactions is capable of explaining the formation of (Z)-1,2-ethenediol provided a suprathermal diffusion of OH. We also conclude that our proposed formation pathway is not selective and also yields other abstraction and addition products. Key in our findings is the connection between the adsorption modes of the reactants and intermediates and the stereoselectivity of the reactions.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad6f9a