The ALMA Legacy Survey of Class 0/I Disks in Corona australis, Aquila, chaMaeleon, oPhiuchus north, Ophiuchus, Serpens (CAMPOS). I. Evolution of Protostellar Disk Radii
We surveyed nearly all the embedded protostars in seven nearby clouds (Corona Australis, Aquila, Chamaeleon I and II, Ophiuchus North, Ophiuchus, Serpens) with the Atacama Large Millimeter/submillimeter Array at 1.3 mm observations with a resolution of 0.″1. This survey detected 184 protostellar dis...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-10, Vol.973 (2), p.138 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We surveyed nearly all the embedded protostars in seven nearby clouds (Corona Australis, Aquila, Chamaeleon I and II, Ophiuchus North, Ophiuchus, Serpens) with the Atacama Large Millimeter/submillimeter Array at 1.3 mm observations with a resolution of 0.″1. This survey detected 184 protostellar disks, 90 of which were observed at a resolution of 14–18 au, making it one of the most comprehensive high-resolution disk samples across various protostellar evolutionary stages to date. Our key findings include the detection of new annular substructures in two Class I and two flat-spectrum sources, while 21 embedded protostars exhibit distinct asymmetries or substructures in their disks. We find that protostellar disks have a substantially large variability in their radii across all evolutionary classes. In particular, the fraction of large disks with sizes above 60 au decreases as the protostar evolves from Class 0 to Class I. Compiling the literature data, we discovered an increasing trend of the gas disk radii to dust disk radii ratio (
R
gas,Kep
/
R
mm
) with increasing bolometric temperature (
T
bol
). Our results indicate that the dust and gas disk radii decouple during the early Class I stage. However, in the Class 0 stage, the dust and gas disk sizes are similar, which allows for a direct comparison between models and observational data at the earliest stages of protostellar evolution. We show that the distribution of radii in the 52 Class 0 disks in our sample is in high tension with various disk formation models, indicating that protostellar disk formation remains an unsolved question. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ad6152 |