Age Determination of LAMOST Red Giant Branch Stars Based on the Gradient Boosting Decision Tree Method

In this study, we estimate the stellar ages of LAMOST DR8 red giant branch (RGB) stars based on the gradient boosting decision tree (GBDT) algorithm. We used 2643 RGB stars extracted from the APOKASC-2 asteroseismological catalog as the training data set. After selecting the parameters ([ α /Fe], [C...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-05, Vol.967 (1), p.37
Hauptverfasser: Wang, Hai-Feng, Carraro, Giovanni, Li, Xin, Li, Qi-Da, Spina, Lorenzo, Chen, Li, Wang, Guan-Yu, Deng, Li-Cai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we estimate the stellar ages of LAMOST DR8 red giant branch (RGB) stars based on the gradient boosting decision tree (GBDT) algorithm. We used 2643 RGB stars extracted from the APOKASC-2 asteroseismological catalog as the training data set. After selecting the parameters ([ α /Fe], [C/Fe], T eff , [N/Fe], [C/H], log g ) highly correlated with age using GBDT, we apply the same GBDT method to the new catalog of more than 590,000 stars classified as RGB stars. The test data set shows that the median relative error is around 11.6% for the method. We also compare the predicted ages of RGB stars with other studies (e.g., based on APOGEE) and find some systematic differences. The final uncertainty is about 15%–30% compared to the ages of open clusters. Then, we present the spatial distribution of the RGB sample with an age determination, which could recreate the expected result, and discuss systematic biases. All these diagnostics show that one can apply the GBDT method to other stellar samples to estimate atmospheric parameters and age.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad3b90