The Gamma-Ray Origin of RX J0852.0-4622 Quantifying the Hadronic and Leptonic Components: Further Evidence for the Cosmic-Ray Acceleration in Young Shell-type SNRs

Fukui et al. quantified the hadronic and leptonic gamma-rays in the young TeV gamma-ray shell-type supernova remnant (SNR) RX J1713.7-3946 (RX J1713), and demonstrated that gamma rays are a combination of hadronic and leptonic gamma-ray components with a ratio of ∼6: 4 in gamma-ray counts N g . This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-02, Vol.961 (2), p.162
Hauptverfasser: Fukui, Yasuo, Aruga, Maki, Sano, Hidetoshi, Hayakawa, Takahiro, Inoue, Tsuyoshi, Rowell, Gavin, Einecke, Sabrina, Tachihara, Kengo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fukui et al. quantified the hadronic and leptonic gamma-rays in the young TeV gamma-ray shell-type supernova remnant (SNR) RX J1713.7-3946 (RX J1713), and demonstrated that gamma rays are a combination of hadronic and leptonic gamma-ray components with a ratio of ∼6: 4 in gamma-ray counts N g . This discovery, which adopted a new methodology of multi-linear gamma-ray decomposition, was the first quantification of the two gamma-ray components. In the present work, we applied the same methodology to another TeV gamma-ray shell-type SNR RX J0852.0-4622 (RXJ0852) in 3D space characterized by (the interstellar proton column density N p )-(the nonthermal X-ray count N x )-[ N g ], and quantified the hadronic and leptonic gamma-ray components as having a ratio of ∼5:5 in N g . The present work adopted the fitting of two/three flat planes in 3D space instead of a single flat plane, which allowed suppression of the fitting errors. This quantification indicates that hadronic and leptonic gamma-rays are of the same order of magnitude in these two core-collapse SNRs, verifying the significant hadronic gamma-ray components. We argue that the target interstellar protons, in particular their spatial distribution, are essential in any attempts to identify the type of particles responsible for gamma-ray emission. The present results confirm that cosmic-ray (CR) energy ≲100 TeV is compatible with a scheme in which SNRs are the dominant source of these Galactic CRs.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ad0da3