Stellar Escape from Globular Clusters. I. Escape Mechanisms and Properties at Ejection

The theory of stellar escape from globular clusters (GCs) dates back nearly a century, especially the gradual evaporation of GCs via two-body relaxation coupled with external tides. More violent ejection can also occur via strong gravitational scattering, supernovae, gravitational wave-driven merger...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-04, Vol.946 (2), p.104
Hauptverfasser: Weatherford, Newlin C., Kıroğlu, Fulya, Fragione, Giacomo, Chatterjee, Sourav, Kremer, Kyle, Rasio, Frederic A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theory of stellar escape from globular clusters (GCs) dates back nearly a century, especially the gradual evaporation of GCs via two-body relaxation coupled with external tides. More violent ejection can also occur via strong gravitational scattering, supernovae, gravitational wave-driven mergers, tidal disruption events, and physical collisions, but comprehensive study of the many escape mechanisms has been limited. Recent exquisite kinematic data from the Gaia space telescope has revealed numerous stellar streams in the Milky Way (MW) and traced the origin of many to specific MWGCs, highlighting the need for further examination of stellar escape from these clusters. In this study, the first of a series, we lay the groundwork for detailed follow-up comparisons between Cluster Monte Carlo GC models and the latest Gaia data on the outskirts of MWGCs, their tidal tails, and associated streams. We thoroughly review escape mechanisms from GCs and examine their relative contributions to the escape rate, ejection velocities, and escaper demographics. We show for the first time that three-body binary formation may dominate high-speed ejection from typical MWGCs, potentially explaining some of the hypervelocity stars in the MW. Due to their mass, black holes strongly catalyze this process, and their loss at the onset of observable core collapse, characterized by a steep central brightness profile, dramatically curtails three-body binary formation, despite the increased post-collapse density. We also demonstrate that even when born from a thermal eccentricity distribution, escaping binaries have significantly nonthermal eccentricities consistent with the roughly uniform distribution observed in the Galactic field.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/acbcc1