DeepZipper: A Novel Deep-learning Architecture for Lensed Supernovae Identification

Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSN...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-03, Vol.927 (1), p.109
Hauptverfasser: Morgan, R., Nord, B., Bechtol, K., González, S. J., Buckley-Geer, E., Möller, A., Park, J. W., Kim, A. G., Birrer, S., Aguena, M., Annis, J., Bocquet, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Cawthon, R., da Costa, L. N., Davis, T. M., De Vicente, J., Doel, P., Ferrero, I., Friedel, D., Frieman, J., García-Bellido, J., Gatti, M., Gaztanaga, E., Giannini, G., Gruen, D., Gruendl, R. A., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Maia, M. A. G., Miquel, R., Palmese, A., Paz-Chinchón, F., Pereira, M. E. S., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Smith, M., Suchyta, E., Swanson, M. E. C., Tarle, G., To, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large-scale astronomical surveys have the potential to capture data on large numbers of strongly gravitationally lensed supernovae (LSNe). To facilitate timely analysis and spectroscopic follow-up before the supernova fades, an LSN needs to be identified soon after it begins. To quickly identify LSNe in optical survey data sets, we designed ZipperNet, a multibranch deep neural network that combines convolutional layers (traditionally used for images) with long short-term memory layers (traditionally used for time series). We tested ZipperNet on the task of classifying objects from four categories—no lens, galaxy-galaxy lens, lensed Type-Ia supernova, lensed core-collapse supernova—within high-fidelity simulations of three cosmic survey data sets: the Dark Energy Survey, Rubin Observatory’s Legacy Survey of Space and Time (LSST), and a Dark Energy Spectroscopic Instrument (DESI) imaging survey. Among our results, we find that for the LSST-like data set, ZipperNet classifies LSNe with a receiver operating characteristic area under the curve of 0.97, predicts the spectroscopic type of the lensed supernovae with 79% accuracy, and demonstrates similarly high performance for LSNe 1–2 epochs after first detection. We anticipate that a model like ZipperNet, which simultaneously incorporates spatial and temporal information, can play a significant role in the rapid identification of lensed transient systems in cosmic survey experiments.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac5178