Quantifying Scatter in Galaxy Formation at the Lowest Masses

We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak halo masses of M peak = 10 11 M ⊙ down into the ultra-faint dwarf range to M peak = 10 7 M ⊙ . Our simulated dwarfs have stellar masses of M star = 790 M ⊙ to 8.2 × 10 8 M ⊙ , with corres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2021-12, Vol.923 (1), p.35
Hauptverfasser: Munshi, Ferah, Brooks, Alyson M., Applebaum, Elaad, Christensen, Charlotte R., Quinn, T., Sligh, Serena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We predict the stellar mass–halo mass (SMHM) relationship for dwarf galaxies, using simulated galaxies with peak halo masses of M peak = 10 11 M ⊙ down into the ultra-faint dwarf range to M peak = 10 7 M ⊙ . Our simulated dwarfs have stellar masses of M star = 790 M ⊙ to 8.2 × 10 8 M ⊙ , with corresponding V -band magnitudes from −2 to −18.5. For M peak > 10 10 M ⊙ , the simulated SMHM relationship agrees with literature determinations, including exhibiting a small scatter of 0.3 dex. However, the scatter in the SMHM relation increases for lower-mass halos. We first present results for well-resolved halos that contain a simulated stellar population, but recognize that whether a halo hosts a galaxy is inherently mass resolution dependent. We thus adopt a probabilistic model to populate “dark” halos below our resolution limit to predict an “intrinsic” slope and scatter for the SMHM relation. We fit linearly growing log-normal scatter in stellar mass, which grows to more than 1 dex at M peak = 10 8 M ⊙ . At the faintest end of the SMHM relation probed by our simulations, a galaxy cannot be assigned a unique halo mass based solely on its luminosity. Instead, we provide a formula to stochastically populate low-mass halos following our results. Finally, we show that our growing log-normal scatter steepens the faint-end slope of the predicted stellar mass function.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ac0db6