Structure of Quark Star: A Comparative Analysis of Bayesian Inference and Neural Network Based Modeling
In this work, we compare two powerful parameter estimation methods, namely Bayesian inference and neural network based learning, to study the quark matter equation of state with constant speed of sound parameterization and the structure of the quark stars within the two-family scenario. We use the m...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2020-12, Vol.905 (1), p.9 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we compare two powerful parameter estimation methods, namely Bayesian inference and neural network based learning, to study the quark matter equation of state with constant speed of sound parameterization and the structure of the quark stars within the two-family scenario. We use the mass and radius estimations from several X-ray sources and also the mass and tidal deformability measurements from gravitational wave events to constrain the parameters of our model. The results found from the two methods are consistent. The predicted speed of sound is compatible with the conformal limit. |
---|---|
ISSN: | 0004-637X 1538-4357 1538-4357 |
DOI: | 10.3847/1538-4357/abbfb4 |