Catastrophic Cooling in Superwinds: Line Emission and Non-equilibrium Ionization

Outflows are a pervasive feature of mechanical feedback from super star clusters (SSCs) in starburst galaxies, playing a fundamental role in galaxy evolution. Observations are now starting to confirm that outflows can undergo catastrophic cooling, suppressing adiabatic superwinds. Here we present a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2019-12, Vol.887 (2), p.161
Hauptverfasser: Gray, William J., Oey, M. S., Silich, Sergiy, Scannapieco, Evan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Outflows are a pervasive feature of mechanical feedback from super star clusters (SSCs) in starburst galaxies, playing a fundamental role in galaxy evolution. Observations are now starting to confirm that outflows can undergo catastrophic cooling, suppressing adiabatic superwinds. Here we present a suite of one-dimensional, hydrodynamic simulations that study the ionization structure of these outflows and the resulting line emission generated by the cooling gas. We use the non-equilibrium atomic chemistry package within MAIHEM, our modified version of FLASH, which evolves the ionization state of the gas and computes the total cooling rate on an ion-by-ion basis. We find that catastrophically cooling models produce strong nebular line emission compared to adiabatic outflows. We also show that such models exhibit non-equilibrium conditions, thereby generating more highly ionized states than equivalent equilibrium models. When including photoionization from the parent SSC, catastrophically cooling models show strong C iv λ1549 and O vi λ1037 emission. For density-bounded photoionization, He ii λ1640, λ4686, C iii] λ1908, Si iv λ1206, and Si iii λ1400 are also strongly enhanced. These lines are seen in extreme starbursts where catastrophic cooling is likely to occur, suggesting that they may serve as diagnostics of such conditions. The higher ionization generated by these flows may help to explain line emission that cannot be attributed to SSC photoionization alone.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/ab510d