The Largest M Dwarf Flares from ASAS-SN
The All-sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light approximately every day, reaching a depth of g ∼ 18 mag. Over the course of its first 4 yr of transient alerts (2013-2016), ASAS-SN observed 53 events classified as likely M...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2019-05, Vol.876 (2), p.115 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The All-sky Automated Survey for Supernovae (ASAS-SN) is the only project in existence to scan the entire sky in optical light approximately every day, reaching a depth of g ∼ 18 mag. Over the course of its first 4 yr of transient alerts (2013-2016), ASAS-SN observed 53 events classified as likely M dwarf flares. We present follow-up photometry and spectroscopy of all 53 candidates, confirming flare events on 47 M dwarfs, one K dwarf, and one L dwarf. The remaining four objects include a previously identified T Tauri star, a young star with outbursts, and two objects too faint to confirm. A detailed examination of the 49 flare star light curves revealed an additional six flares on five stars, resulting in a total of 55 flares on 49 objects ranging in V-band contrast from ΔV = −1 to −10.2 mag. Using an empirical flare model to estimate the unobserved portions of the flare light curve, we obtain lower limits on the V-band energy emitted during each flare, spanning -35, which are among the most energetic flares detected on M dwarfs. The ASAS-SN M dwarf flare stars show a higher fraction of H emission, as well as stronger H emission, compared to M dwarfs selected without reference to activity, consistent with belonging to a population of more magnetically active stars. We also examined the distribution of tangential velocities, finding that the ASAS-SN flaring M dwarfs are likely to be members of the thin disk and are neither particularly young nor old. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ab148d |