X-Ray Luminosity and Size Relationship of Supernova Remnants in the LMC
The Large Magellanic Cloud (LMC) has ∼60 confirmed supernova remnants (SNRs). Because of the known distance, 50 kpc, the SNRs' angular sizes can be converted to linear sizes, and their X-ray observations can be used to assess X-ray luminosities (LX). We have critically examined the LMC SNRs...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-08, Vol.863 (2), p.137 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Large Magellanic Cloud (LMC) has ∼60 confirmed supernova remnants (SNRs). Because of the known distance, 50 kpc, the SNRs' angular sizes can be converted to linear sizes, and their X-ray observations can be used to assess X-ray luminosities (LX). We have critically examined the LMC SNRs' sizes reported in the literature to determine the most plausible sizes. These sizes and the LX determined from XMM-Newton observations are used to investigate their relationship to explore the environmental and evolutionary effects on the X-ray properties of SNRs. Our research provides the following three results. (1) Small LMC SNRs, a few to 10 pc in size, are all Type Ia with LX > 1036 erg s−1. The scarcity of small core-collapse (CC) SNRs is a result of CC SNe exploding in the low-density interiors of interstellar bubbles blown by their massive progenitors during their main-sequence phase. (2) Medium-sized (10-30 pc) CC SNRs show bifurcation in LX, with the X-ray-bright SNRs either in an environment associated with molecular clouds or containing pulsars and pulsar-wind nebulae and the X-ray-faint SNRs being located in low-density interstellar environments. (3) Large (size > 30 pc) SNRs show a trend of LX fading with size, although the scatter is large. The observed relationship between LX and sizes can help constrain models of SNR evolution. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/aad04b |