Marginal Stability of Sweet-Parker Type Current Sheets at Low Lundquist Numbers

Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number Sc exists, hovering around Sc ∼ 104, above which threshold Sweet-Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-06, Vol.859 (2), p.83
Hauptverfasser: Shi, Chen, Velli, Marco, Tenerani, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number Sc exists, hovering around Sc ∼ 104, above which threshold Sweet-Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet-Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aabd83