Curvature from Strong Gravitational Lensing: A Spatially Closed Universe or Systematics?

Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2018-02, Vol.854 (2), p.146
Hauptverfasser: Li, Zhengxiang, Ding, Xuheng, Wang, Guo-Jian, Liao, Kai, Zhu, Zong-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Model-independent constraints on the spatial curvature are not only closely related to important problems, such as the evolution of the universe and properties of dark energy, but also provide a test of the validity of the fundamental Copernican principle. In this paper, with the distance sum rule in the Friedmann-Lemaître-Robertson-Walker metric, we achieve model-independent measurements of the spatial curvature from the latest type Ia supernovae and strong gravitational lensing (SGL) observations. We find that a spatially closed universe is preferred. Moreover, by considering different kinds of velocity dispersion and subsamples, we study possible factors that might affect model-independent estimations for the spatial curvature from SGL observations. It is suggested that the combination of observational data from different surveys might cause a systematic bias, and the tension between the spatially flat universe and SGL observations is alleviated when the subsample only from the Sloan Lens ACS Survey is used or a more complex treatment for the density profile of lenses is considered.
ISSN:0004-637X
1538-4357
DOI:10.3847/1538-4357/aaa76f