Backscattering and Line Broadening in Orion
Examination of emission lines in high-velocity-resolution optical spectra of the Orion Nebula confirms that the velocity component on the red wing of the main ionization front emission line is due to backscattering in the Photon Dominated Region. This scattered light component has a weak wavelength...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2023-01, Vol.165 (1), p.21 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Examination of emission lines in high-velocity-resolution optical spectra of the Orion Nebula confirms that the velocity component on the red wing of the main ionization front emission line is due to backscattering in the Photon Dominated Region. This scattered light component has a weak wavelength dependence that is consistent with either general interstellar medium particles or particles in the foreground of the Orion Nebula Cluster. An anomalous line-broadening component that has been known for 60+ years is characterized in unprecedented detail. Although this extra broadening may be due to turbulence along the line of sight of our spectra, we explore the possibility that it is due to Alfvén waves in conditions where the ratio of magnetic and thermal energies are about equal and constant throughout the ionized gas. |
---|---|
ISSN: | 0004-6256 1538-3881 |
DOI: | 10.3847/1538-3881/ac9f44 |