The TESS Phase Curve of KELT-1b Suggests a High Dayside Albedo
We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of ppm and a secondary eclipse depth of ppm. We also measure...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-11, Vol.160 (5), p.211 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We measured the optical phase curve of the transiting brown dwarf KELT-1b (TOI 1476) using data from the TESS spacecraft. We found that KELT-1b shows significant phase variation in the TESS bandpass, with a relatively large phase amplitude of
ppm and a secondary eclipse depth of
ppm. We also measured a marginal eastward offset in the dayside hot spot of 183 ± 74 relative to the substellar point. We detected a strong phase-curve signal attributed to ellipsoidal distortion of the host star with an amplitude of 399 ± 19 ppm. Our results are roughly consistent with the Spitzer phase curves of KELT-1b, but the TESS eclipse depth is deeper than expected. Our cloud-free 1D models of KELT-1b’s dayside emission are unable to fit the full combined eclipse spectrum. Instead, the large TESS eclipse depth suggests that KELT-1b may have a significant dayside geometric albedo of
A
g
∼ 0.5 in the TESS bandpass, which would agree with the tentative trend between equilibrium temperature and geometric albedo recently suggested by Wong et al. We posit that if KELT-1b has a high dayside albedo, it is likely due to silicate clouds that form on KELT-1b’s nightside and are subsequently transported onto the western side of KELT-1b’s dayside hemisphere before breaking up. |
---|---|
ISSN: | 0004-6256 1538-3881 1538-3881 |
DOI: | 10.3847/1538-3881/abb5aa |