The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?
Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present m...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2020-11, Vol.160 (5), p.237 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 237 |
container_title | The Astronomical journal |
container_volume | 160 |
creator | France, Kevin Duvvuri, Girish Egan, Hilary Koskinen, Tommi Wilson, David J. Youngblood, Allison Froning, Cynthia S. Brown, Alexander Alvarado-Gómez, Julián D. Berta-Thompson, Zachory K. Drake, Jeremy J. Garraffo, Cecilia Kaltenegger, Lisa Kowalski, Adam F. Linsky, Jeffrey L. Loyd, R. O. Parke Mauas, Pablo J. D. Miguel, Yamila Pineda, J. Sebastian Rugheimer, Sarah Schneider, P. Christian Tian, Feng Vieytes, Mariela |
description | Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. In order to evaluate the potential habitability of Earth-like planets around old, inactive M dwarfs, we present new Hubble Space Telescope and Chandra X-ray Observatory observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's Star, we observe two FUV (δ130 5000 s; E130 1029.5 erg each) and one X-ray (EX 1029.2 erg) flares, and we estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of ∼25%. A publicly available 5 to 10 m spectral energy distribution of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone (rHZ ∼ 0.1 au). Both thermal and nonthermal escape modeling indicate (1) the quiescent stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the flare environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of 87 Earth atmospheres Gyr−1 through thermal processes and 3 Earth atmospheres Gyr−1 through ion loss processes. These results suggest that if rocky planet atmospheres can survive the initial ∼5 Gyr of high stellar activity, or if a second-generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars. |
doi_str_mv | 10.3847/1538-3881/abb465 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_3881_abb465</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2456891829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-e50f12db40b0850ca8dc662a6fef1cf8d1dc888991b6af243d8b3161d1ba2bb13</originalsourceid><addsrcrecordid>eNp9kM-LUzEUhYMoWEf3LgO69Dn3vuSlqRuRcZwKFVHGdbj5NU2ZSWqSKv3vba04G3F14fKdw-Fj7DnCa6Hl_BwnoQehNZ6TtVJND9js7-shmwGAHNQ4qcfsSWsbAEQNcsa-XK8DX6ab9RByqDd7_pV8op5K5pf5R6ol34XcOdWyy54TR-BX-8o_8fc_qcY3fEk2dbK3gVPnK2r97VP2KNJtC8_-3DP27cPl9cVyWH2--njxbjU4CfM-hAkijt5KsKAncKS9U2okFUNEF7VH77TWiwVaRXGUwmsrUKFHS6O1KM7Yi1NvaT2Z5lIPbu1KzsF1MwpAIcfFPbWt5fsutG42ZVfzYZgZ5aT0AvVvCk6Uq6W1GqLZ1nRHdW8QzFGvObo0R5fmpPcQeXWKpLK97_wP_vIfOG0MKjDTYe_cbH0UvwCDkoV-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2456891829</pqid></control><display><type>article</type><title>The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?</title><source>IOP Publishing Free Content</source><creator>France, Kevin ; Duvvuri, Girish ; Egan, Hilary ; Koskinen, Tommi ; Wilson, David J. ; Youngblood, Allison ; Froning, Cynthia S. ; Brown, Alexander ; Alvarado-Gómez, Julián D. ; Berta-Thompson, Zachory K. ; Drake, Jeremy J. ; Garraffo, Cecilia ; Kaltenegger, Lisa ; Kowalski, Adam F. ; Linsky, Jeffrey L. ; Loyd, R. O. Parke ; Mauas, Pablo J. D. ; Miguel, Yamila ; Pineda, J. Sebastian ; Rugheimer, Sarah ; Schneider, P. Christian ; Tian, Feng ; Vieytes, Mariela</creator><creatorcontrib>France, Kevin ; Duvvuri, Girish ; Egan, Hilary ; Koskinen, Tommi ; Wilson, David J. ; Youngblood, Allison ; Froning, Cynthia S. ; Brown, Alexander ; Alvarado-Gómez, Julián D. ; Berta-Thompson, Zachory K. ; Drake, Jeremy J. ; Garraffo, Cecilia ; Kaltenegger, Lisa ; Kowalski, Adam F. ; Linsky, Jeffrey L. ; Loyd, R. O. Parke ; Mauas, Pablo J. D. ; Miguel, Yamila ; Pineda, J. Sebastian ; Rugheimer, Sarah ; Schneider, P. Christian ; Tian, Feng ; Vieytes, Mariela</creatorcontrib><description>Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. In order to evaluate the potential habitability of Earth-like planets around old, inactive M dwarfs, we present new Hubble Space Telescope and Chandra X-ray Observatory observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's Star, we observe two FUV (δ130 5000 s; E130 1029.5 erg each) and one X-ray (EX 1029.2 erg) flares, and we estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of ∼25%. A publicly available 5 to 10 m spectral energy distribution of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone (rHZ ∼ 0.1 au). Both thermal and nonthermal escape modeling indicate (1) the quiescent stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the flare environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of 87 Earth atmospheres Gyr−1 through thermal processes and 3 Earth atmospheres Gyr−1 through ion loss processes. These results suggest that if rocky planet atmospheres can survive the initial ∼5 Gyr of high stellar activity, or if a second-generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/abb465</identifier><language>eng</language><publisher>Madison: The American Astronomical Society</publisher><subject>Astronomical models ; Astronomy ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Atmosphere ; Atmospheric heating ; Atmospheric models ; Atmospheric stability ; Biomarkers ; Circumstellar habitable zone ; Control stability ; DWARF STARS ; Earth ; ENERGY SPECTRA ; Exoplanet atmospheres ; Extrasolar planets ; EXTREME ULTRAVIOLET RADIATION ; Habitability ; Habitable zone ; HEATING RATE ; Hubble Space Telescope ; HYDRODYNAMICS ; M stars ; Muscles ; Planetary atmospheres ; PLANETS ; Radiation ; Red dwarf stars ; ROTATION ; SIMULATION ; SOLAR ACTIVITY ; Solar extreme ultraviolet emission ; SPACE ; Space telescopes ; Spectral energy distribution ; STABILITY ; Stability analysis ; Stellar activity ; Stellar age ; STELLAR ATMOSPHERES ; Stellar flares ; TELESCOPES ; Terrestrial environments ; Terrestrial planets ; X RADIATION ; X ray telescopes</subject><ispartof>The Astronomical journal, 2020-11, Vol.160 (5), p.237</ispartof><rights>2020. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Nov 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-e50f12db40b0850ca8dc662a6fef1cf8d1dc888991b6af243d8b3161d1ba2bb13</citedby><cites>FETCH-LOGICAL-c407t-e50f12db40b0850ca8dc662a6fef1cf8d1dc888991b6af243d8b3161d1ba2bb13</cites><orcidid>0000-0001-9667-9449 ; 0000-0001-5646-6668 ; 0000-0002-5094-2245 ; 0000-0001-7458-1176 ; 0000-0002-7119-2543 ; 0000-0003-4615-8746 ; 0000-0003-4446-3181 ; 0000-0002-0436-1802 ; 0000-0002-8784-6724 ; 0000-0002-0210-2276 ; 0000-0003-0873-0262 ; 0000-0002-1002-3674 ; 0000-0003-2631-3905 ; 0000-0002-1176-3391 ; 0000-0001-8499-2892 ; 0000-0002-9607-560X ; 0000-0002-8791-6286 ; 0000-0003-1620-7658 ; 0000-0002-4489-0135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abb465/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,777,781,882,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/abb465$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/23013429$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>France, Kevin</creatorcontrib><creatorcontrib>Duvvuri, Girish</creatorcontrib><creatorcontrib>Egan, Hilary</creatorcontrib><creatorcontrib>Koskinen, Tommi</creatorcontrib><creatorcontrib>Wilson, David J.</creatorcontrib><creatorcontrib>Youngblood, Allison</creatorcontrib><creatorcontrib>Froning, Cynthia S.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>Alvarado-Gómez, Julián D.</creatorcontrib><creatorcontrib>Berta-Thompson, Zachory K.</creatorcontrib><creatorcontrib>Drake, Jeremy J.</creatorcontrib><creatorcontrib>Garraffo, Cecilia</creatorcontrib><creatorcontrib>Kaltenegger, Lisa</creatorcontrib><creatorcontrib>Kowalski, Adam F.</creatorcontrib><creatorcontrib>Linsky, Jeffrey L.</creatorcontrib><creatorcontrib>Loyd, R. O. Parke</creatorcontrib><creatorcontrib>Mauas, Pablo J. D.</creatorcontrib><creatorcontrib>Miguel, Yamila</creatorcontrib><creatorcontrib>Pineda, J. Sebastian</creatorcontrib><creatorcontrib>Rugheimer, Sarah</creatorcontrib><creatorcontrib>Schneider, P. Christian</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Vieytes, Mariela</creatorcontrib><title>The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. In order to evaluate the potential habitability of Earth-like planets around old, inactive M dwarfs, we present new Hubble Space Telescope and Chandra X-ray Observatory observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's Star, we observe two FUV (δ130 5000 s; E130 1029.5 erg each) and one X-ray (EX 1029.2 erg) flares, and we estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of ∼25%. A publicly available 5 to 10 m spectral energy distribution of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone (rHZ ∼ 0.1 au). Both thermal and nonthermal escape modeling indicate (1) the quiescent stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the flare environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of 87 Earth atmospheres Gyr−1 through thermal processes and 3 Earth atmospheres Gyr−1 through ion loss processes. These results suggest that if rocky planet atmospheres can survive the initial ∼5 Gyr of high stellar activity, or if a second-generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.</description><subject>Astronomical models</subject><subject>Astronomy</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Atmosphere</subject><subject>Atmospheric heating</subject><subject>Atmospheric models</subject><subject>Atmospheric stability</subject><subject>Biomarkers</subject><subject>Circumstellar habitable zone</subject><subject>Control stability</subject><subject>DWARF STARS</subject><subject>Earth</subject><subject>ENERGY SPECTRA</subject><subject>Exoplanet atmospheres</subject><subject>Extrasolar planets</subject><subject>EXTREME ULTRAVIOLET RADIATION</subject><subject>Habitability</subject><subject>Habitable zone</subject><subject>HEATING RATE</subject><subject>Hubble Space Telescope</subject><subject>HYDRODYNAMICS</subject><subject>M stars</subject><subject>Muscles</subject><subject>Planetary atmospheres</subject><subject>PLANETS</subject><subject>Radiation</subject><subject>Red dwarf stars</subject><subject>ROTATION</subject><subject>SIMULATION</subject><subject>SOLAR ACTIVITY</subject><subject>Solar extreme ultraviolet emission</subject><subject>SPACE</subject><subject>Space telescopes</subject><subject>Spectral energy distribution</subject><subject>STABILITY</subject><subject>Stability analysis</subject><subject>Stellar activity</subject><subject>Stellar age</subject><subject>STELLAR ATMOSPHERES</subject><subject>Stellar flares</subject><subject>TELESCOPES</subject><subject>Terrestrial environments</subject><subject>Terrestrial planets</subject><subject>X RADIATION</subject><subject>X ray telescopes</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kM-LUzEUhYMoWEf3LgO69Dn3vuSlqRuRcZwKFVHGdbj5NU2ZSWqSKv3vba04G3F14fKdw-Fj7DnCa6Hl_BwnoQehNZ6TtVJND9js7-shmwGAHNQ4qcfsSWsbAEQNcsa-XK8DX6ab9RByqDd7_pV8op5K5pf5R6ol34XcOdWyy54TR-BX-8o_8fc_qcY3fEk2dbK3gVPnK2r97VP2KNJtC8_-3DP27cPl9cVyWH2--njxbjU4CfM-hAkijt5KsKAncKS9U2okFUNEF7VH77TWiwVaRXGUwmsrUKFHS6O1KM7Yi1NvaT2Z5lIPbu1KzsF1MwpAIcfFPbWt5fsutG42ZVfzYZgZ5aT0AvVvCk6Uq6W1GqLZ1nRHdW8QzFGvObo0R5fmpPcQeXWKpLK97_wP_vIfOG0MKjDTYe_cbH0UvwCDkoV-</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>France, Kevin</creator><creator>Duvvuri, Girish</creator><creator>Egan, Hilary</creator><creator>Koskinen, Tommi</creator><creator>Wilson, David J.</creator><creator>Youngblood, Allison</creator><creator>Froning, Cynthia S.</creator><creator>Brown, Alexander</creator><creator>Alvarado-Gómez, Julián D.</creator><creator>Berta-Thompson, Zachory K.</creator><creator>Drake, Jeremy J.</creator><creator>Garraffo, Cecilia</creator><creator>Kaltenegger, Lisa</creator><creator>Kowalski, Adam F.</creator><creator>Linsky, Jeffrey L.</creator><creator>Loyd, R. O. Parke</creator><creator>Mauas, Pablo J. D.</creator><creator>Miguel, Yamila</creator><creator>Pineda, J. Sebastian</creator><creator>Rugheimer, Sarah</creator><creator>Schneider, P. Christian</creator><creator>Tian, Feng</creator><creator>Vieytes, Mariela</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9667-9449</orcidid><orcidid>https://orcid.org/0000-0001-5646-6668</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0001-7458-1176</orcidid><orcidid>https://orcid.org/0000-0002-7119-2543</orcidid><orcidid>https://orcid.org/0000-0003-4615-8746</orcidid><orcidid>https://orcid.org/0000-0003-4446-3181</orcidid><orcidid>https://orcid.org/0000-0002-0436-1802</orcidid><orcidid>https://orcid.org/0000-0002-8784-6724</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid><orcidid>https://orcid.org/0000-0003-0873-0262</orcidid><orcidid>https://orcid.org/0000-0002-1002-3674</orcidid><orcidid>https://orcid.org/0000-0003-2631-3905</orcidid><orcidid>https://orcid.org/0000-0002-1176-3391</orcidid><orcidid>https://orcid.org/0000-0001-8499-2892</orcidid><orcidid>https://orcid.org/0000-0002-9607-560X</orcidid><orcidid>https://orcid.org/0000-0002-8791-6286</orcidid><orcidid>https://orcid.org/0000-0003-1620-7658</orcidid><orcidid>https://orcid.org/0000-0002-4489-0135</orcidid></search><sort><creationdate>20201101</creationdate><title>The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?</title><author>France, Kevin ; Duvvuri, Girish ; Egan, Hilary ; Koskinen, Tommi ; Wilson, David J. ; Youngblood, Allison ; Froning, Cynthia S. ; Brown, Alexander ; Alvarado-Gómez, Julián D. ; Berta-Thompson, Zachory K. ; Drake, Jeremy J. ; Garraffo, Cecilia ; Kaltenegger, Lisa ; Kowalski, Adam F. ; Linsky, Jeffrey L. ; Loyd, R. O. Parke ; Mauas, Pablo J. D. ; Miguel, Yamila ; Pineda, J. Sebastian ; Rugheimer, Sarah ; Schneider, P. Christian ; Tian, Feng ; Vieytes, Mariela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-e50f12db40b0850ca8dc662a6fef1cf8d1dc888991b6af243d8b3161d1ba2bb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Astronomical models</topic><topic>Astronomy</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Atmosphere</topic><topic>Atmospheric heating</topic><topic>Atmospheric models</topic><topic>Atmospheric stability</topic><topic>Biomarkers</topic><topic>Circumstellar habitable zone</topic><topic>Control stability</topic><topic>DWARF STARS</topic><topic>Earth</topic><topic>ENERGY SPECTRA</topic><topic>Exoplanet atmospheres</topic><topic>Extrasolar planets</topic><topic>EXTREME ULTRAVIOLET RADIATION</topic><topic>Habitability</topic><topic>Habitable zone</topic><topic>HEATING RATE</topic><topic>Hubble Space Telescope</topic><topic>HYDRODYNAMICS</topic><topic>M stars</topic><topic>Muscles</topic><topic>Planetary atmospheres</topic><topic>PLANETS</topic><topic>Radiation</topic><topic>Red dwarf stars</topic><topic>ROTATION</topic><topic>SIMULATION</topic><topic>SOLAR ACTIVITY</topic><topic>Solar extreme ultraviolet emission</topic><topic>SPACE</topic><topic>Space telescopes</topic><topic>Spectral energy distribution</topic><topic>STABILITY</topic><topic>Stability analysis</topic><topic>Stellar activity</topic><topic>Stellar age</topic><topic>STELLAR ATMOSPHERES</topic><topic>Stellar flares</topic><topic>TELESCOPES</topic><topic>Terrestrial environments</topic><topic>Terrestrial planets</topic><topic>X RADIATION</topic><topic>X ray telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>France, Kevin</creatorcontrib><creatorcontrib>Duvvuri, Girish</creatorcontrib><creatorcontrib>Egan, Hilary</creatorcontrib><creatorcontrib>Koskinen, Tommi</creatorcontrib><creatorcontrib>Wilson, David J.</creatorcontrib><creatorcontrib>Youngblood, Allison</creatorcontrib><creatorcontrib>Froning, Cynthia S.</creatorcontrib><creatorcontrib>Brown, Alexander</creatorcontrib><creatorcontrib>Alvarado-Gómez, Julián D.</creatorcontrib><creatorcontrib>Berta-Thompson, Zachory K.</creatorcontrib><creatorcontrib>Drake, Jeremy J.</creatorcontrib><creatorcontrib>Garraffo, Cecilia</creatorcontrib><creatorcontrib>Kaltenegger, Lisa</creatorcontrib><creatorcontrib>Kowalski, Adam F.</creatorcontrib><creatorcontrib>Linsky, Jeffrey L.</creatorcontrib><creatorcontrib>Loyd, R. O. Parke</creatorcontrib><creatorcontrib>Mauas, Pablo J. D.</creatorcontrib><creatorcontrib>Miguel, Yamila</creatorcontrib><creatorcontrib>Pineda, J. Sebastian</creatorcontrib><creatorcontrib>Rugheimer, Sarah</creatorcontrib><creatorcontrib>Schneider, P. Christian</creatorcontrib><creatorcontrib>Tian, Feng</creatorcontrib><creatorcontrib>Vieytes, Mariela</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>France, Kevin</au><au>Duvvuri, Girish</au><au>Egan, Hilary</au><au>Koskinen, Tommi</au><au>Wilson, David J.</au><au>Youngblood, Allison</au><au>Froning, Cynthia S.</au><au>Brown, Alexander</au><au>Alvarado-Gómez, Julián D.</au><au>Berta-Thompson, Zachory K.</au><au>Drake, Jeremy J.</au><au>Garraffo, Cecilia</au><au>Kaltenegger, Lisa</au><au>Kowalski, Adam F.</au><au>Linsky, Jeffrey L.</au><au>Loyd, R. O. Parke</au><au>Mauas, Pablo J. D.</au><au>Miguel, Yamila</au><au>Pineda, J. Sebastian</au><au>Rugheimer, Sarah</au><au>Schneider, P. Christian</au><au>Tian, Feng</au><au>Vieytes, Mariela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last?</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2020-11-01</date><risdate>2020</risdate><volume>160</volume><issue>5</issue><spage>237</spage><pages>237-</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>Recent work has demonstrated that high levels of X-ray and UV activity on young M dwarfs may drive rapid atmospheric escape on temperate, terrestrial planets orbiting within the habitable zone. However, secondary atmospheres on planets orbiting older, less active M dwarfs may be stable and present more promising candidates for biomarker searches. In order to evaluate the potential habitability of Earth-like planets around old, inactive M dwarfs, we present new Hubble Space Telescope and Chandra X-ray Observatory observations of Barnard's Star (GJ 699), a 10 Gyr old M3.5 dwarf, acquired as part of the Mega-MUSCLES program. Despite the old age and long rotation period of Barnard's Star, we observe two FUV (δ130 5000 s; E130 1029.5 erg each) and one X-ray (EX 1029.2 erg) flares, and we estimate a high-energy flare duty cycle (defined here as the fraction of the time the star is in a flare state) of ∼25%. A publicly available 5 to 10 m spectral energy distribution of GJ 699 is created and used to evaluate the atmospheric stability of a hypothetical, unmagnetized terrestrial planet in the habitable zone (rHZ ∼ 0.1 au). Both thermal and nonthermal escape modeling indicate (1) the quiescent stellar XUV flux does not lead to strong atmospheric escape: atmospheric heating rates are comparable to periods of high solar activity on modern Earth, and (2) the flare environment could drive the atmosphere into a hydrodynamic loss regime at the observed flare duty cycle: sustained exposure to the flare environment of GJ 699 results in the loss of 87 Earth atmospheres Gyr−1 through thermal processes and 3 Earth atmospheres Gyr−1 through ion loss processes. These results suggest that if rocky planet atmospheres can survive the initial ∼5 Gyr of high stellar activity, or if a second-generation atmosphere can be formed or acquired, the flare duty cycle may be the controlling stellar parameter for the stability of Earth-like atmospheres around old M stars.</abstract><cop>Madison</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/abb465</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9667-9449</orcidid><orcidid>https://orcid.org/0000-0001-5646-6668</orcidid><orcidid>https://orcid.org/0000-0002-5094-2245</orcidid><orcidid>https://orcid.org/0000-0001-7458-1176</orcidid><orcidid>https://orcid.org/0000-0002-7119-2543</orcidid><orcidid>https://orcid.org/0000-0003-4615-8746</orcidid><orcidid>https://orcid.org/0000-0003-4446-3181</orcidid><orcidid>https://orcid.org/0000-0002-0436-1802</orcidid><orcidid>https://orcid.org/0000-0002-8784-6724</orcidid><orcidid>https://orcid.org/0000-0002-0210-2276</orcidid><orcidid>https://orcid.org/0000-0003-0873-0262</orcidid><orcidid>https://orcid.org/0000-0002-1002-3674</orcidid><orcidid>https://orcid.org/0000-0003-2631-3905</orcidid><orcidid>https://orcid.org/0000-0002-1176-3391</orcidid><orcidid>https://orcid.org/0000-0001-8499-2892</orcidid><orcidid>https://orcid.org/0000-0002-9607-560X</orcidid><orcidid>https://orcid.org/0000-0002-8791-6286</orcidid><orcidid>https://orcid.org/0000-0003-1620-7658</orcidid><orcidid>https://orcid.org/0000-0002-4489-0135</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2020-11, Vol.160 (5), p.237 |
issn | 0004-6256 1538-3881 1538-3881 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_3881_abb465 |
source | IOP Publishing Free Content |
subjects | Astronomical models Astronomy ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Atmosphere Atmospheric heating Atmospheric models Atmospheric stability Biomarkers Circumstellar habitable zone Control stability DWARF STARS Earth ENERGY SPECTRA Exoplanet atmospheres Extrasolar planets EXTREME ULTRAVIOLET RADIATION Habitability Habitable zone HEATING RATE Hubble Space Telescope HYDRODYNAMICS M stars Muscles Planetary atmospheres PLANETS Radiation Red dwarf stars ROTATION SIMULATION SOLAR ACTIVITY Solar extreme ultraviolet emission SPACE Space telescopes Spectral energy distribution STABILITY Stability analysis Stellar activity Stellar age STELLAR ATMOSPHERES Stellar flares TELESCOPES Terrestrial environments Terrestrial planets X RADIATION X ray telescopes |
title | The High-energy Radiation Environment around a 10 Gyr M Dwarf: Habitable at Last? |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T07%3A00%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20High-energy%20Radiation%20Environment%20around%20a%2010%20Gyr%20M%20Dwarf:%20Habitable%20at%20Last?&rft.jtitle=The%20Astronomical%20journal&rft.au=France,%20Kevin&rft.date=2020-11-01&rft.volume=160&rft.issue=5&rft.spage=237&rft.pages=237-&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/abb465&rft_dat=%3Cproquest_O3W%3E2456891829%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2456891829&rft_id=info:pmid/&rfr_iscdi=true |